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1. INTRODUCTION 

HEAT conduction problems involving phase changes have 
been studied extensively since Stefan [l] published his 
analytical solution. There are, however, only a few investiga- 
tions [2-6] reported for phase changes involving spherical 
bodies. 

In this paper, both inward and outward phase changes of 
spherical bodies are considered. The initial temperature of 
the system is assumed constant at the fusion temperature 
and the boundary surface temperature is assumed to change 
instantaneously. A simple approximation is obtained and a 
numerical solution using a finite difference method is em- 
ployed to test the accuracy of the approximation. 

2. ANALYSIS 

Consider a sphere with radius r = a, or a liquid space 
bounded internally by a sphere of radius a The temperature 
T of the system is initially at the fusion temperature T, 
At time t = 0, the surface temperature is changed and held 
constant at T,. The liquid freezes from the surface in either 
an inward or outward direction. 

The temperature distribution in the solid region satisfies 
the following equations : 

ah au --_ 
ax* - dry 

0 < x < S(r), r>O (1) 

u=O at r=O or at x = S(T), T > 0 (2) 

u=l at x=0, rzo (3) 

au -= 
ax 

-L(l+p)g at x=S(r), rr0 (4) 

S(0) = 0. 

The dimensionless variables are defined by 
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x = - for inward freezing 
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S(r) = 
a - R(r) 
- for inward freezing (qa) 

a 

S(T) = 
R(t) - a 
- for outward freezing (9b) 

a 

H 
L= 

c,(T, - TO) 

where a is the thermal dillitsivity, c,, is the specific heat, 
and R(r) is the position of the phase front. The enthalpy of 
fusion, H, is positive for freezing and negative for melting so 
that the dimensionless variable L is always positive. All 
properties are assumed to be independent of temperature. 
In equation (4), p(r) is defined by 

p(r) = - S(r) for inward phase change, and (11) 

p(~) = S(r) for outward phase change. (12) 

Note that equations (l)-(5) become the classical Stefan 
problem when p(r) = 0 and u = (T - T,)/(T, - T,). There- 
fore, for a flat plate, p(r) = 0. 

3. APPROXIMATE SOLUTION 

Assume the temperature distribution, u(x, t) to be similar 
to the exact solution for the one-dimensional Stefan problem. 
Then 

u(x,r) = 1 - erf[;;;(r)‘, 1 > 0, 0 < x < S(z). (13) 

Here I is considered a function of time. 
Substituting equation (13) into equation (4) one obtains 

S(1 + p,P2 = __2!-_ 
dr (Jx) L e” erf 1 
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For small time, the spherical body acts like a flat plate: 
therefore, I =Z &. where E., is determined from Stefan’s 
solution and is the positive solution of 

1 
(Ja) I, &*erf i., = - 

L 
(15) 

Integrating equation (14) assuming i = I, yields 

S J(1 + :p, = 21.a Jr. (16) 

Note that equation (16) is an exact solution to equation (14) 
for a flat plate where p G 0 and S = 22, Jr. Therefore 

f = J(l + :P) (17) 

can be considered the “approximate correction factor” for 
the spherical geometry. Since 1 z L, is valid only for very 
small time, this approximation is valid only for small time. 

In order to check the accuracy of the approximation. 
this problem is solved numerically using a finite difference 
method. 

4. FINITE DIFFERENCE SOLUTION 

The following changes in variables are made in order to 
establish a coordinate system that would be stationary 
with respect to the moving fusion front: 

x 

y = so (18) 

$(d = [Sk)]2. (19) 

Then equations (l)(5) become 

o<y<1, r > 0 (20) 

u=O at Y=l. r>o (21) 

u=l at Y=O, T>O (22) 

ill L 
-zz 

ay 
- z(l + p)zT at Y = 1, r>O (23) 

$(O, = 0. (24) 

The space between Y = 0 and Y = 1 is divided into n 
equal dubdivisions. Equations (20H24) can now be formu- 
lated in finite difference equations. The following third order 
polynomial approximation is used for (iiui~y),, , : 

The subscripts indicate the space increments and the 
superscripts indicate the time increments. From equation 
(23) 

+ j+l = $j _ &)&,{Puj_, - 184 - %-2: (26) 

for j = 0. 1. 2.. From equaoon (21) 

A*’ + __--y (u’ 

4(Ay) ’ I+ 1 
- u:_,; 

I 
(27) 

for i = 2. 3.. . n. From equations (21) and (221. 

u{ = 1 for j = 0, 1,2.. _. (28) 

u!+,=O for j=O.1,2.... (29) 

For the stability of the solution, time increments are restricted 
approximately (see [6]) by 

At < f $(AY)‘. (30) 

5. DISCUSSION OF RESULTS 

In order to start the numerical calculation. initial approxi- 
mations for the nondimensional variables up and Ic/’ are 
needed. The exact solution of Stefan’s problem for a flat 
plate is used for the initial approximation and yields : 

$” = 0.01 or So = @l 

r0 = @J/(4& 

erf(l,yJ np~1-~---~ 
erf E., 

(31) 

(32) 

Equations (26) and (27) are calculated by setting n = 10 
and letting L = 0.01. 0.2, 1.0, 5 and 100. An IBM 360 digital 
computer was used for these calculations. The results are 
shown in Fig. 1. 

The finite difference solution is checked with the exact 
solution for a flat plate by setting p(s) = 0. Since the initial 
approximation in this case is also exact, the possible in- 
accuracies caused by the initial approximation cannot be 
checked by this method. However, the effect of the initial 
approximation is checked by making s” = 0.01 (or $” = 
lo-?. The errors resulting from the initial approximation 
were shown to be negligible. 

From Fig. 1, it can be seen that when L is very large, the 
numerical solutions approach the approximate solution 
(16), and when L is very small the numerical solutions 
approach Stefan’s solution. Therefore, these two solutions 
can be considered the limiting solutions of the problem. 
It must be noted, however. from equation (15), that the 
value of 2, becomes either zero or infinite when L is infinite 
or zero, respectively. There is no steady state as discussed 
in [6], when the initial temperature is equal to the fusion 
temperature. 

The accuracy of the approximation (16) is good for large 
values of L. Also the accuracy is better for the outward phase 
change than the inward phase change for the same value of L. 
This is anticipated since the change of I is slower for the 
outward phase change. 
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FIG. 1. Interface position as a function of time. 

Since 1 increases for the inward phase change problem, ACKNOWLEDGEMENT 
the approximation always shows a faster rate of phase 
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6. CONCLUSIONS 

A simple approximate solution for the inward or outward ‘. 
phase change of a spherical body is obtained. A finite 
difference formulation is derived and evaluated to check 

2, 

the accuracy of the approximation. 3. 
The accuracy of the approximation is good when the 

ratio, L, of enthalpy of phase change to the sensible heat, 
c&T’ - T,) is large. Although many engineering applica- 
tions would involve problems with large values of L, one 
application that would satisfy this condition particularly 4. 
well would the freeze-drying of foods. The approximation 
has better accuracy for the outward phase change than the 
inward phase change. 

5. 

Since the numerical solutions lie between the approxima- 
tion and the solution of the phase change for a flat plate, 6. 
the approximation is considered exact as L approaches 
infinity. 
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